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HﬁSTRACT
) Case studies drawn from fifteen years of field and laboratory
experiments are used to demonstrate and explain why the flow-in-
duced vibration of long cylinders in ocean currents varies from
single mode lockin to brocad band random vibration. It is shown
that the range of observed behavior is predictable with careful
consideration of a few dimensionless parameters. New interpreta-
tions are given to the significance of familiar parameters such as
mass ratio and reduced damping. 1In addition the fractional varia-
tion in flow velocity over the length of the cylinder and the
number of natural frequencies within the bandwidth of the vortex
shedding frequencies are shown to be of considerable importance.
When consideration of the above parameters reveals that multi-
ple mode response without lock-in is likely to occur, then hydrody-
namic damping is revealed to have a powerful influence on dynamic
response, and the simple product of the total damping ratio and the
mode number allows one to anticipate the whole range of response
behavior, from the wave propagation properties of infinite length
cables to the standing wave features of short cylinders.
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s.g. = specific gravity

Pe = fluid density

Py = water density

D = cylinder diameter

S, = Strouhal number

V(x) = flow velocity at x

Va = reduced velocity

Voax = peak velocity in a linear shear

Vees = turbulence standard deviation

N, = the number of modes within the shear bandwidth

g = natural frequency of mode n

Onay = natural frequency closest to the peak shedding
- frequency

{n = damping ratio for mode n

Cnon = hydrodynamic part of modal damping ratio

Can = structural part of modal damping ratio

B = velocity squared damping coefficient
INTRODUCTION

The vortex-induced vibration of a long flexible cylinder such
as a mooring cable or a deep water petroleum production riser,
depends on many dimensionless parameters acting in concert. The
prediction of the vibration requires that one weigh the relative
influence of each parameter and estimate the probable outcome. A
sequential approach is used in this paper, beginning with the
determination of whether or not lock-in is possible. The most
important parameters in this determination are shown to be: the
-shear fraction, AV/V,y, and the number of resonant natural modes
within the shear excitation bandwidth, N,. Also important are the
reduced damping, S5,, mass ratio, p, and turbulence intensity. When
it is determined that lock-in is likely, then it is possible to
turn to a large established literature to make precise estimates of
response amplitudes [e.g. Griffin & Ramberg, 4].

When lock-in is not the predicted response, there are three
principal causes: i) The reduced damping is sufficiently large
that no significant motion results. ii) The vortex shedding
frequency does not correspond to any natural frequency. iii) The
excitation bandwidth includes the natural frequencies of more than
one mode, resulting in a multi-moded response with random vibration
characteristics.



Of the three reasons the third, multi-moded behavior, is the
least well understood and is of considerable practical importance.
This subject is examined in detail in this paper. In this case
AV/Viyx and N, are important parameters, in that they are reliable
indicators of multiple mode nonlock-in response. When multiple
mode nonlock-in response is the prediction then another parameter
is useful in characterizing the expected dynamic properties of the
cylinder. This parameter is n{,, the product of the mode number
and the total damping ratio for the responding mode. The total
damping ratio, includes the hydrodynamic contribution. This param-
eter is recognized in the field of mechanical vibration by several
names. It can be derived by considering the attenuation of a wave
travelling the length of the cylinder or it can be derived by
calculating the ratio of the half power bandwidth of mode n to the
separation in frequency between modes. Thus it is a measure of
what is known as modal overlap. Regardless of the way one derives
or defines this parameter, it is useful in anticipating those
cylinders, which will behave as if of infinite length, versus those
which exhibit standing waves and mode shapes.

EVALUATING CONDITIONS FAVORABLE TO LOCK-IN

By the mid 1970's a great deal of laboratory scale research
had been completed by many investigators on fixed and moving cylin-
ders in fluid flows. Concepts such as lock-in, correlation length,
and drag coefficient dependence on response amplitude were quite
well developed. Missing at the time were systematic experiments on
long flexible cylinders which could rationally extend the observa-
tions made in laboratory scale tests to field applications of much
larger scale.

The Early Castine Experiments
In the summers of 1975 and 1976, the author, with the sponsor-

ship of the Office of Naval Research, conducted experiments in a
tidal flow at Castine, Maine. Most of the cylinders tested were
synthetic fiber, or wire cables, 75 feet in length with diameters



varying from 1/4 to 5/Bths of an inch. Flow velocity was quite
spatially uniform and varied with time from 1/2 to 2 1/2 feet per
second. The typical vibration response was single mode lock-in
with response amplitudes of 11 diameter at the antinodes. At
certain flow velocities there were occurrences of a lower amplitude
random vibration response which was named nonlock-in behavior,
Vandiver & Mazel, 1976 [18). The Reynolds number range for these
tests was from 800 to 10,000 and the reduced damping was very low.
The observed response was rather insensitive to variations in
Reynold’s number as well as to large amounts of surface roughness,
due typically to the cable braid or the helical lays of rope.

An initially inexplicable, but ultimately significant, event
occurred. On one occasion a plastic jacketed wire rope 0.280 inch
in diameter and 900 feet in length was stretched across the tidal
basin from two points of land. The submerged portion of the cable
was approximately 500 feet long and was exposed to flow which
varied approximately 20% along the length. In spite of the shear
lock-in occurred at approximately the 50th mode. Response ampli-
tudes of $1/2 to #1 diameter were observed. This established that
lock-in is possible at very high mode numbers in the presence of a
mild shear.

astine, 1981

A much more ambitious experiment, sponsored by ONR, the U.S.
Geological Survey, and a consortium of industry sponsors, was
conducted in the summer of 1981 at the same site at Castine, Maine.
The experiment lasted 6 weeks and involved 8 people in the field
with the research vessel Edgerton from the MIT Sea Grant Program.
The experimental setup is shown in Figure 1.

Two test cylinders were used in the experiments. The first
was a cable 75 feet in length, 1} inches in diameter, containing 7
biaxial pairs of accelerometers. In the experiments, tension,
acceleration, current and mean drag coefficient were measured. This
cable was also pulled inside of a 1.625 in. diameter steel pipe,
which was then used as the second test cylinder. The pipe was



selected to provide a cylinder with a significantly different mass
ratio and a non-negligible bending rigidity. Properties of the
test cylinders are given in Table 1.

The primary objectives of this field experiment were to (1)
measure mean drag coefficients under field conditions and compare
them to the very high values observed under laboratory conditions,
(2) determine the differences in behavior of cables and pipes with
significant differences in bending stiffness and mass ratio, and
(3) test cable behavior with attached lumped masses. The behavior
with lumped masses is reported in Griffin & Vandiver, 1984 [6].

Length: 75.0 £ 0.1 feet
Diameter: 1.25 £ 0.02 inches
Weight per foot in air: 0.7704 pounds per foot
Specific Gravity: 1.408

Lengths 75.0 ¢ 0.02 feet
Outside diameter: 1.631 £ 0.003 inches
Inside diameter: 1.493 t 0.003 inches

Weight per foot in air

including weight of the

internal cable: 2.001 pounds per foot
Weight per foot

including cable and

trapped water: 2.236 pounds per foot

Specific gravity of pipe
with cable and trapped

water: 2.40

Measured bending

stiffness, EI: (3.016 £ 0.05) x 10° pound
inches?




The field measurements of drag coefficients are presented in
Figures 2 and 3 from Vandiver, 1983 [13]. Figure 2 shows the drag
coefficient for the pipe measured over a period of 2 1/2 hours.
The data is moving average data. Every data point in the plot is
a sliding average of B8.55 seconds of observation. Also shown in
the figure are the moving averages of the flow velocity and the rms
vibration amplitudes observed in the cross flow vibration direction
and the in-line vibration direction at one location on the cylin-
der. The location was at L/6, or 1/6th of the length from one end
of the cylinder.

In Figure 2 for the pipe the data reveals pericds or plateaus
of high drag coefficient adjacent to periods of relatively low drag
coefficient. The plateaus are at times of lock-in with individual
modes which are indicated in the figure; for example, 2nd and 3rd
mode. At these times the natural frequency of the cylinder for the
mode indicated, coincided with the vortex shedding frequency. The
valleys in drag coefficient occurred at times when the flow veloci-
ty was such that wake synchronization could not occur. At these
times vibration still occurred but with lower rms amplitudes and
with broader band random vibration characteristics, than occurred
during single mode lock-~in. Under lock-in conditions the drag
coefficients were greater than two times the value of a similar
non-moving, rigid cylinder at the same Reynolds number.

The reported in-line and cross flow rms response measurements
shown in the figures are plotted for only one location, L/6. The
response amplitude at this location is influenced by mode shape.
For example this location would show zero response for vibration in
the sixth mode, and would show maximum antinode response for the
third mode. One must not, therefore, attempt to draw quantitative
conclusions about response amplitude from these rms plots without
taking mode shapes into consideration. Modal response amplitudes
have been evaluated for these experiments by Vandiver and Jong,
1987 [17]}.

Figure 3 is also a 2 1/2 hour record, but for the cable.
Again very high drag coefficients are observed. However, there is



one remarkable difference between the cable data and the data shown
for the pipe in Figure 2. There are no obvious plateaus and val-
leys in the drag coefficient. There are no clear demarcations
between periods of lock-in and nonlock-in behavior. That differ-~
-ence in mass ratio between the pipe and the cable was the cause of
the difference in response, did not become clear until a few years
later. This is discussed in the next section.

The drag coefficient data deserve further explanation. They
are least accurate at low flow speeds. This is due to absolute
aerrors in zeroing the load cell under field conditions. These
absolute errors lead to large percentage errors at low flow speeds
when the drag force is small. Por the cable data, the large in-
crease in measured drag coefficient at the end of the run is due to
such an offset error. The error bounds are given with the figure
titles.

Impo of Mass io
The mass ratio is m/p,D’. It is =/4 times the ratio of the
mass per unit length of the cylinder (m) to the mass per unit
length of the displaced fluid, (np,D?/4). Some authors include the
added mass when reporting the mass per unit length. This should be
avoided because the added mass is not constant, as will be dis-
cussed below.

Figure 4, reproduced from Chung, 1987 [2], shows data from a
variety of sources. Response amplitude is plotted versus reduced
velocity for a variety of cylinders with different mass ratios. The
reduced velocity, V;, in this figure is based on the in air natural
frequency, which to sufficient accuracy is the same as the in vacuo
value. In cother words an added mass coefficient of zero has been
used. The data for a mass ratio of 0.78 (specific gravity = 1.0)
is for first mode vibration of a neutrally buoyant aluminum tube,
120 mm diameter, 9.93 m long, immersed in water; from Steve Koch,
1985 [21].

The remarkable conclusion that one can draw from this figure
is that low mass ratic cylinders have a much broader lock~in range



than high mass ratio ones, when the reduced velocity is computed
using the measured flow speed and the jn air natural frequency, not
the observed vibration frequency. This property is the key to
understanding the difference between the response characteristics
of the pipe and the cable in the 1981 Castine experiments.

Large amplitude, self-excited, lock~in occurs, if and only if,
there is a synchronization of the periodic formation of vortices in
the wake and resonant motion of the cylinder. The range of fre-
quencies which permit this synchronization is governed by two
factors. One is the response bandwidth of the resonant peak of the
oscillator, which is given approximately by twice the damping
ratio, multiplied by the natural frequency: 2{,0,. For example,
a resonant mode with one per cent damping will have a resonant
bandwidth of approximately two per cent of the natural frequency.
For a fixed natural frequency this is much tco small to explain the
wide lock-in bands exhibited in Figure 4. The second factor is the
tolerance of the wake synchronization process to variations in
reduced velocity resulting from changes in flow speed. Hereafter,
this will be referred to as the lock-in bandwidth of the wake.

Driven cylinder experiments have shown that for a fixed vibra-
tion frequency, and favorable cross flow vibration amplitudes, the
range of flow velocity, and therefore reduced velocity, that per-
mits wake synchronization is narrow. The typical lock-in bandwidth
of the wake, expressed in reduced velocity terms is approximately
5.0 to 6.5, or about a 25% variation. Of course the precise limits
of this range also depend on Reynold’s number, turbulence intensi-
ty, and roughness. Taking all of these into consideration, howev-
er, the conclusion is the same; the lock-in bandwidth of the wake
*is much narrower than the lock-in range exhibited by low mass ratio
cylinders such as those shown in Figure 4.

Therefore, the only remaining explanation of the wide resonant
lock-in range shown in the figure for some cylinders is that the
cylinder resonant response frequency is not constant, but must be
increasing, as the flow velocity increases. Close inspection of
response frequency data for low mass ratio cylinders, reveals that



over the lock-in range the response frequency increases with the
flow velocity. This effect is most pronounced for the lowest mass
ratio cylinders.

The rise in the resonant, response frequency with flow speed
is due to the variation in the added mass coefficient over the
lock-in range. There is driven cylinder data by Sarpkaya, 1977(9],
to support this hypothesis. His data reveals that at an amplitude
to diameter ratio of 0.5 the added mass coefficient decreases
gharply from values of 5.5 to -.8, as the reduced velocity varys
from 2.5 to approximately 5.5. The added mass coefficient then
rises slowly to about -0.5 as the reduced velocity increases to the
limits of the data at B8.0. This phenomenon is similar for a wide
range of vibration amplitudes. The consequence of importance in
the context of the lock-in bandwidth is that, if the added mass
decreases with increasing reduced velocity then the natural fre-
quency of the cylinder will increase. This allows the lock-in
region to persist to higher values of flow speed.

This effect is less for high mass ratio cylinders, because the
added mass is a lower percentage of the total mass per unit length.
Equation (1) gives an expression for the natural frequencies of a
submerged beam or cable with pinned ends and under constant tension
showing the effect of the added mass coefficient.

On 201 = [(NR/L)T + (nn/L)*EI)}(p,D?*(p+nC,/4]1° (1)

where:

length,

tension,

mass ratio = m/p,D?

masg per unit length without added mass
added mass coefficient

Young’s modulus

area moment of inertia of the beam
mode number

fluid density

‘D::HI?J.QE': 3
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When the added mass coefficient is zero the above equation
yields the in air natural frequency, w,,; . The above expression



for the submerged natural frequencies may also be expressed as the
product of the in air natural frequencies and a gsimple function of
the added mass coefficient, as follows.

an.ﬂuid = wn,nix X [1*’(7‘0./4#}1'! (2)

This equation may be solved for the added mass coefficient,
C.- By substituting the values of experimentally observed vibra-
tion frequencies in this expression, one may calculate the effec-
tive added mass coefficient. This was the objective of a set of
experiments recently conducted by T.Y. Chung, he measured the self-
excited cross flow response amplitude and frequency for five flexi-
ble cylinders in water with mass ratios varying from 1.6 to 6.1
[3]. The experiment was conducted in the recirculating cavitation
tunnel of the Korea Research Institute of Ships and Qcean Engineer-
ing. The cylinders were 6.0 mm in diameter and 0.6 m long. His
response amplitude versus reduced velocity data were consistent, as
expected, with the behavior shown in Figure 4: that is lower mass
ratio cylinders have broader lock-in bandwidths than high mass
ratio ones. He used the observed vibration frequency data to
calculate effective added mass coefficients. These are plotted
versus reduced velocity in Figure 5. Also plotted on the figure
are the added mase curves from Sarpkaya[9] for amplitude to diame-
ter ratios of 0.5 and 0.75. The amplitude of vibration of the
experimental cylinders was in the form of the half sine wave mode
shape of the first mode of vibration, and therefore, varied from
0.0 at the ends to a maximum at the midspan. The midspan amplitude
varied with reduced velocity in the lock-in range from 0.2 to 1.3
siameters. Since Sarpkaya’s data show that the added mass is
Lensitive to amplitude then Chung‘s results reflect an effective
aggregate added mass, which represents a form of spatial average of
the local added mass. Furthermore for each reduced velocity the
peak amplitude of Chung’s test cylinders was different. Therefore,
it is not possible to make a one to one comparison between the
Sarpkaya curves and the calculated effective added mass coeffi-
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cients. Nonetheless the similarity between Chung’s effective added
mass coefficients and Sarpkaya’s data supports the theory that
variation in added mass allows the natural frequency to rise with
flow speed.

The effect of mass ratio, as presented above must be taken into
account when predicting the likelihood of lock-in response of
flexible cylinders in uniform flows. For example, tensiocned cables
with negligible bending stiffness have uniformly spaced natural
frequencies. For each natural frequency there is a range of flow
speeds which may permit lock-in. The width of this range is gov-
erned by the mass ratio. Low mass ratio will result in large
variation in natural frequency and thus cause the overlap of the
lock-in range of each natural mode with the neighboring modes.
This was the case with the cable tested at Castine in 1981, and
deacribed earlier. The cable had a specific gravity of 1.408
(k=1.106). Judging from the data in Figure 4, such a cable would
be able to lock-in over a range of reduced velocities from approxi-
mately 4 to 8. This corresponds to a doubling in flow velocity.
Thus the lock-in range of the first mode of the cable extended to
the range of the second mode which had an in air natural frequency
twice that of the first mode. Similarly the second, third and
higher modes had overlapping lock-in regions. The cable tested at
Castine was able to lock-in at all flow speeds, with typical re-
sponse amplitudes of tl1 diameter at the antinodes.

Since the natural frequencies are uniformly spaced for a
constant tension cable, the overlap of the modes becomes greater at
higher mode numbers. At the tenth mode, a lock-in bandwidth of
less than $10% would overlap the lock-in bands of the 9th and 11lth
modes. Thus, all constant tension cables, independent of mass
.ratio, will have overlapping lock~in ranges for mode numbers ex-
ceeding the tenth mode and many cables, with low mass ratio will
have overlapping lock-in ranges at much lower mode numbers.

Beams under tension behave differently. At low mode numbers,
tension effects may be dominant, and the natural frequencies may be
similar to those of cables, as one can deduce from Equation (1).
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At higher mode numbers, the bending effects become important. When
the bending effects are dominant the natural frequencies increase
as n® and the separation between natural frequencies increases in
proportion to 2n. Thus for beams under tension, if the lock-in
regions do not overlap for low modal frequencies, they probably
wan’t at high mode numbers either.

The pipe tested at Castine experienced lock-in at its first
four natural frequencies, as dictated by the flow speed. The lock-
in regions did not overlap, and as flow speed increased the pipe
exhibited clearly defined ranges of lock-in and nonlock-in behav-
ior. The lock-in ranges did not overlap. This was not because the
pipe had greater separation between natural frequencies than did
the cable. 1In fact the first four excited modes for both the pipe
and cable had quite similar in air natural frequencies. For exam-
ple, the first five natural frequencies for the cable at 792 pounds
tension were 1.20, 2.39, 3.58, 4.79 and 6.08 Hz. For the pipe at
1000 pounds tension the first five natural frequencies were 0.86,
1.77, 2.86, 4.26 and 5.73 Hz. The clear lack in the overlap of the
lock-in regions for the pipe was primarily due to difference in
mass ratio. The specific gravity of the pipe was 2.4 (p=1.89),
and it was, therefore, less sensitive to changes in added mass than
was the cable, which had a specific gravity of 1.41. As a conse-~
quence the pipe had a narrower lock-in range than the cable, per-
mitting the existence of nonlock-in regions between lock-in ones.

In-line response: As biaxial accelerometers were used it was
possible to observe both the cross flow and in-line response of the
cable and pipe. It was discovered that the in-line response was
highly correlated to the cross flow, especially under lock-in
conditions. The correlation was non-linear and could be approxi-
mated by a square law model. This correlation is discussed in
reference [17].

Reynold’s er Dependence
The Reynold’s number range encountered in the tests at Castine
was from zero to 10,000. Vibration was observed above approximate-
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ly 300. From 300 to 10,000 the vibration behavior seemed to have
little Reynold’s number dependence. Cylinder motion appears to be
more important than Reynold’s number in determining lock-in charac-
teristics. Further evidence of this insensivity of flow-induced
vibration to Reynold’s number may be found in numerous reports of
the large amplitude vibration of drilling risers and pilings; for
example Griffin & Ramberg, 1982 [4].

e lerance of Lock-in to Small Amounts o hear

The 900 foot long wire rope test: When two or more modes are
within the lock-in range, one may dominate. The long wire rope
tested in 1975 had at least ten modes potentially capable of lock-
in. Somehow, one mode, approximately the fiftieth was able to
dominate. This was in spite of the fact that the flow speed varied
approximately 20% along the submerged portion of the cable. Lock-
in was possible because a 20% varjiation in speed, and therefore
reduced velocity, is within the tolerance of the wake to remain
synchronized with a cylinder vibrating at one frequency. 1In this
case the mode, which was, apparently, best positioned in frequency
to lock-in over the entire ‘length, dominated. - As the tidal current
slowly changed, the responding mode would change, interspersed with
pericds of random vibration, characteristic of nonlock-in behavior.
The mode number was estimated by measuring the distance between
vibration nodes, which were clearly visible on the portion of the
cable which was not submerged.

A subtle question remains, regarding the relative importance
of shear and mass ratio in determining the possibility of lock-in.
Consider a low mass ratio cylinder with a reduced velocity lock-in
range of 4 to B8, as shown in Figure 4. 1If this cylinder were
expoged to a shear flow profile which doubled in speed from one end
to the other, such that the reduced velocity, based on the in air
natural frequency, varied from 4 to 8, would the cable be able to
lock-in over the entire length? The answer is emphatically no.
Although the added mass coefficient may vary along the length, the
aggregate added mass on the cable results in a single resonant
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frequency for each mode and shear profile. At any specific fre-
quency, the lock-in tolerance bandwidth of the wake is on the order
of 20%, as previously revealed in numerous forced cylinder cscilla-
tion tests. Therefore, the wake synchronization regions of cylin-
ders in sheared flows is restricted to zones over which the veloci-
ty varies by approximately 20%.

Is it then possible for a long cylinder in a sheared flow to
be divided up into zones of 20% current variation, with each zone
exhibiting lock-in with a different mode at a different natural
frequency? Again the answer is no, because multiple frequency
components in the response are sufficient to prevent lock-in, as
discussed in the next section. It is not possible for more than
one mode at a time to synchronize with the wake.

e Effec Irreqular nd tion on Lock-in

In the late 70s, a likely lock-in prevention mechanism, which
had not been previously studied, was irregular motion of the cylin-
der. A laboratory experiment was conducted to test the hypothesis
that the introducticn of a small amount of random cylinder motion,
while maintaining a mean frequency most favorable to lock-in, could
in fact prevent wake synchronization and, hence, lock-in from
occurring. A set of driven cylinder experiments were conducted on
a rigid cylinder 0.5 inch in diameter and 20 inches long in the MIT
Ocean Engineering Department’s circulating water tunnel. The
cylinder was driven in cross flow vibration by an electromagnetic
shaker. The cylinder vibration amplitude and spectral shape were
varied in a controlled fashion. The spectral shape varied from
seinusocoidal to random with narrow to broad band characteristics.
Flow velocity, hence reduced velocity, was systematically varied.
€ylinder motion and drag force were measured. Wake velocity compo-
nents were measured with a laser doppler anemometer.

Under sinusoidal lock-in conditions near unity coherence was
cbserved between wake velocity measurements and cylinder motion.
However, when the cylinder motion was changed to a narrow band
random process with a center frequency the same as would usually
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result in lock-in, the coherence between cylinder motion and wake
velocity dropped [Figures 6 and 7}. Broad band cylinder vibration
reduced the coherence to near zero. The mean drag coefficient was
also measured. The disruption in the lock-in process by random
motions of the cylinder caused 50% reductions in drag coefficient,
S8hargel & Vandiver, 1982 [11].

An important conclusion to be drawn from these experiments is
that lock-in is a rather fragile phenomenon which can be reduced or
‘prevented by vibration frequency components not at the lock-in
frequency. An application of considerable significance is the
response prediction problem in sheared flow. Vibration, generated
at one location and with a particular frequency, may propagate to
another, where the local flow velocity, hence, lock-in frequency
range, is different. The existence of the foreign generated fre-
quency components in the local vibration response, may be suffi-
cient to prevent lock-in.

The maximum shear which can be tolerated and yet allow a
cylinder to respond in a locked-in fashion is not known. It is
probably very dependent on whether or not a second resonant fre-
quency is inclided. in the "bandwidth of shedding frequencies which
could be created by the given profile. If only cone resonance is
possible, then lock-in is possible, even with a rather large shear.
The likely behavior would be that the cylinder would lock-in over
‘as much of the length as allowed by the lock-in bandwidth of the
wake, which has been indicated to be on the order of 20%. The
remainder of the cylinder would be in an unsynchronized region
providing additional damping. An example of such a phenomena is
the case of vertical pilings exposed to tidal flow, with large
-variations in the flow profile. Without a second resonant mode,
~simultaneously excited by the shear, there are insufficient foreign
frequency components in the response to disrupt the lock-in behav-
toxr in the region that is driving the cylinder. For most cases the
additional damping contributed by the nonlock-in regions is not
sufficient to prevent lock-in. Damping is important, however, and
is discussed next.
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The Reduced Damping Parameter
Response amplitude prediction under lock-in conditions has

long been based on a dimensionless parameter known variously as the
*reduced damping”, the "stability parameter", or simply the "re-
sponse parameter”. This is sometimes written as S; or {/up, and
defined below; Griffin & Ramberg, 1982[4])

{/p = S; = 28,2 (2md/p,D? ) (3)
where:
8 = 2, the logarithmic decrement

2r8, = @D/V
{ = r/(2um), the damping ratio

The last expression assumes that the damping constant per unit
length, r, is uniformly distributed along the cylinder. If this is
not the case, one may replace r and m in the above expression by
the modal damping and modal mass constants which can be computed by
the techniques of modal analysis.

The reduced damping parameter is both useful and very often
misinterpreted. As this parameter increases, response decreases.
From equation 6 one can see that S; becomes large for large values
of damping ratio or for small values of mass ratio. The common
erroneous conclusion is that low density cables, hence ones with
small mass ratio, are likely to respond more than high density
ones. In fact mass ratio has little to do with the response ampli-
tude. When one replaces the Strouhal number, the damping ratio,
and the mass ratio, in equation 3 with the definitions given, the
dfollowing expression for 5; results. It is independent of cylinder
mass.

Se = Te/(p?) (4)

S; is essentially the ratic of dissipative forces on the cable
to hydrodynamic exciting forces. It is a statement of dynamic
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equilibrium between the average power injected into the cable by
the fluid through lift forces and the power dissipated by damping.
Such an eguilibrium exists for all cases including shears. One
must however properly account for the hydrodynamic and structural
sources of damping in each case, and must also properly account for
the fluid excitation regions on the structure. Vandiver, 1985
[14]}, addresses this topic in some detail.

- If one wishes to use the reduced damping parameter to estimate
response amplitude under lock-in conditions, then one must measure
or estimate the correct damping. If the cylinder is expected to
lock~in over its entire length, then the appropriate damping is the
damping which one would meaSure in an in vacuo transient decay
test. This is often called the structural damping and when ex-
pressed as a fraction of the critical damping ratio is written as
{s,- For cylinders immersed in water, it is sufficiently accurate
to use the structural damping ratio measured in air.

At Castine the in air measured damping ratios for the 2nd,
3rd, and 4th modes of the cable were 0.002 #0.0005 at a vibration
amplitude of cne diameter. For the pipe the damping ratios for the
same modes wefe 0.002, 0.00I5, and 0.001, with an accuracy of
$0.0005. Thus for the pipe and cable at low mode numbers the
reduced damping did not exceed 0.002. Thus on the basis of much
empirical data, one would expect that the lock-in response ampli-
‘tude for these cylinders would be approximately +1 diameter at the
antinodes, as was observed.

There are times of lock-in when one must include some hydrody-
namic damping in the reduced damping calculation. These times
correspond to lock-in conditions that do not include the entire
length of the structure. An example might be a layered flow, in
which a uniform flow exists over a portion of a cable, and the
remainder of the cable is immersed in non-moving fluid. Hydro-
dynamic damping must be included for the portion of the cable in
the non-moving fluid. Though such an example is admittedly con-
trived, such conditions exist in experimental facilities equipped
with flow channels which pass over deep pits, used for testing long
objects.
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CONDITIONS FAVORABLE TO MULTIPLE MODE NONLOCK-IN BEHAVIOR

eared Flow Experiments in the ctic and St. Croix

In 1982 a controversy developed within U.S. Navy circles
regarding the correct drag coefficient to use in the design of very
long mooring cables exposed to realistic, sheared, ocean currents.
Was it necessary as a design precaution to use drag coefficients
measured under lock-in conditions or were the reduced drag coeffi-
cients seen in the presence of random vibration more appropriate?
In a strongly sheared current, would lock-in ever occur?

In 1983 two experiments were conducted on long, small diameter
cables with the purpose of resolving the controversy. A shakedown
experiment was first conducted on a vertical cable hung through the
ice in the Arxctic. 8Six months later a much more elaborate experi-
ment was conducted from a United States Navy barge at St. Croix in
the U.S. Virgin Islands. A braided Kevlar cable 0.16 inch in
diameter was hung vertically at lengths up to 2000 feet under
tensions of approximately 20 pounds. A 0.094 inch Kevlar cable was
also tested at lengths up to 9000 feet. The current varied from a
maximum of about 1.1 ft/s at.the surface to a minimum of approxi-
mately 0.1 ft/s at depth, with substantial variations in between.
Lock-in never occurred. Broad band random vibration did occur as
can be seen in Figures 8 and 9. Accelerometer measurements, made
as little as 275 feet apart, were uncorrelated as shown in Fiqure
10. The cables responded to the vortex shedding as if they were of
infinite length [Kim, Vandiver & Holler, 1985,7].

The uncorrelated response between the two locations could only
be explained by invoking a total effective damping on the cable of
1.0 to 1.5% of critical, ten times the value of the measured struc-
tural damping. This observation was the first clear evidence that
an important property of multi-moded, nonlock-in response was a
large hydrodynamic damping component. This topic is addressed more
fully later in the paper.

Drag coefficients, deduced from top tension and angle measure-
ments, were found to be approximately 1.5. The corresponding rigid
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cylinder value in the Reynolds number range of 200 to 2000 is about
1.2. High drag coefficients, typical of lock-in conditions, were
never observed. Rms response amplitudes of 1/4 to 1/2 a diameter
were observed. For these particular cables and shear conditions,
the controversy was resolved. To generalize the observations
requires the specification of appropriate dimensionless parameters,
which can be used to predict the variations of response: from
single mode lock-in, seen in the Castine experiments, to the broad
band infinite cable behavior characteristic of the St. Croix exper-
iments.

5 imensionless Parameters

In the author’s opinion the two most useful parameters for
predicting whether or not lock-in will occur under sheared flow
conditions are the number of natural modes contained in the band-
width of vortex shedding frequencies, hereafter referred to as N,,
and the dimensionless shear fraction, AV/V,,. Other parameters may
also be influential, though generally of secondary importance. For
example, in some unusual circumstances the turbulence intensity may
be large enough to prevent lock-in. Unusually high structural
damping would also reduce the probability of lock-in under sheared
flow conditions.

When it has been established that lock-in is not likely to
occcur and that the response will be dominated by the simultaneous
contributions of many modes, then further consideration must be
given to the role of hydrodynamic damping, because it is important
in determining the nonlock-in dynamic response characteristics of
the cylinder. At times wave propagation effects, characteristic of
an infinite cylinder, are dominant. Under other conditions stand-
ing waves, characteristic of short resonant systems, are dominant.
The parameter n{, will prove to be the key to anticipating such
behavior.

Thus, one determines if the necessary conditions are met to
create multiple mode nonlock-in response, by evaluating the shear
fraction and the number of excited modes. If the necessary condi-
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tions are met, one is then able to predict the dynamic characteris-
tics of the cylinder, by evaluating the product of the damping(inc-
luding hydrodynamic contributions) and the mode number, yielding
n{,.

fraction and the N er of cite

It has previously been discussed that lock-in is most likely
to occur, when the frequency bandwidth of the lift forces includes
only one system natural frequency. The excitation bandwidth is
strongly influenced by the severity of the shear, because of the
relationship between flow velocity and vortex shedding frequency.
In this paper this excitation bandwidth is deduced primarily from
the shear fraction, AV/V,,. To a lesser extent the bandwidth is
also influenced by the turbulence intensity level Vg:/Vuy. For a
given excitation bandwidth, the number of modes likely to be in-
cluded in the band is governed by the mecdal density of the natural
frequencies of the cylinder. The spacing between natural frequen-
cies depends primarily upon the mechanical properties of the system
such as mass per unit length, stiffness, tension, and length. For
example, the modal density of ra constant tension cable is 1/f,
modes per Hz., or 1/w, modes per(rad/s), where f, is the first mode
natural frequency of a taught cable,.

One measure of the likelihcod of lock-in is then given by the
product of the excitation bandwidth and the modal density. This
product is simply the number of natural frequencies contained
within the excitation bandwidth, and is here defined as N;, [7].

The excitation bandwidth, Af(Hz), due to shear can be esti-
mated using a reduced velocity value of approximately 5.9 and the
yariation in the velocity over the total length of the cylinder,
AV, yielding.

Af = AV/Vy'D (5)

The reduced velocity value of 5.9 is used, because it represents
the average value observed under field conditions for a variety of
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flexible cylinders.
For the constant tension cable N,, the potential number of
responding modes, is given by:

N, = Af/£f, = AV/(£,°D'Vy) = .17AV/(f,"D) (6)

One must consider the size of this number and the shear frac-
tion AV/Vy,, when determining whether or not lock-in will occur.
Three experimental examples are discussed here: the 950 foot long
cable tested at St. Croix, the short 75 foot long cable tested at
Castine, Maine in 1981, and the 900 foot long wire rope tested at
Castine in 1975. o

St. Croix: The velocity variation at St. Croix was approxi-
mately 1.0 ft/s, yielding a shear fraction of AV/Vy, = .91. A 91
percent variation in flow velocity is much larger than the 20 or 30
% maximum lock-in bandwidth which can be tolerated by the wake. On
this evidence alone, one might suspect that lock-in might not
occur. However, the number of modes potentially excited by this
shear should also be estimated. The modal density, 1/f,, for the
0.16 inch diameter Kevlar cable at a length of 950 ft and a tension
of 21 pounds was 10.6 mcdes per Hz. Letting V, = 5.9, N,, the
number of simultaneously excited modes, is found to be 135. Lock-
in was never observed. Infinite cable behavior was observed.

as e e ¢ This cable is described in detail in
Table 1. At 350 pounds tension, this 75 foot long, 1} inch diame-
ter cable had a modal density, 1/f,, of 1.0 mode/Hz. The maximum
current at Castine was approximately 2.5 ft/sec with a spatial
variation of approximately 6%, measured over the length of the test
section. This yields a AV of approximately 0.15 ft/sec and a
variation in shedding frequency, as computed from equation 5 of
0.24 Hz. The turbulence intensity level was also very low; less
than 5%.
For this case, N, = 0.24, for Vv, = 5.9. As a consequence,
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lock-in was frequently observed at Castine. It happened whenever
the mean flow velocity resulted in a shedding frequency which coin-
cided closely with a natural frequency. This happened almost all
of the time for the cable due to added mass variations as discussed
before.

- Had the above calculation been done for the pipe tested at
Castine, the result would have been almost identical, because for
the modes excited at Castine the pipe had almost the same modal
density as the cable. However, nonresonant, nonlock-in response
did occur when the mean shedding frequency fell outside the lock-in
bandwidth of any one natural frequency. Under lock-in conditions,
the 1lift force is periodic and the excitation bandwidth is very
narrow. Under nonlock-in conditions, even with very uniform flow,
the lift force excitation spectral bandwidth broadens substantial-
ly, and the lift force and resulting cylinder response are best
characterized as random processes.

Note that N, approaches zero as the incoming flow becomes
uniform. When N; is less than one, the possibility to excite a
gingle natural mode of the cable is very high and single mode lock-
in is very likely. -Alternatively if N; is very large, there is
little chance to have lock-in, as more than one mode is always
involved in the response. For the St. Croix test N, was greater
than 100, and lock-in never occurred.

astine 16 Wire Rope: Between the two extremes
described above the prediction of the occurrence of lock-in is not
80 clear. The .280 inch diameter, 900 foot long wire rope, tested
at Castine in 1976, is a good example. The relevant data are given
in the Table 2 below. The modal density for this case was 5.24
modes/Hz (computed with C, = 1.0) and the shear fraction, AV/V,,
was 0.2. Using a reduced velocity of 5.9, equations 5 and 6 yield
an estimate for N, of 9.9 modes.
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Table 2. Castine Wire Rope Test

Viex = 1.3 ft/sec Av = .25 ft/sec
T = 350 1lbs. L = 900 feet
D = ,280 inches m = ,00211 slugs/ft in air
- {. = .001, structural modal damping ratio

Vs’ Viaxy £ .05

In this case lock-in did frequently occur. Even though N,,

the number of potentially excited modes, was nearly 10, one mode at
a time dominated. The circumstances were such that, much of the
time, no factor intervened to prevent lock-in. The turbulence
level was too low to interfere, and the structural damping was too
low to prevent lock-in.
z The shear fraction was the pivotal parameter in this case.
The shear fraction of approximately 20% was within the permissible
lock-in bandwidth of the wake, thus allowing lock-in to occur over
the entire length of the cable. However, a review of the recorded
data indicates” that about half the time lock-in did not ‘occur,
suggesting that had the shear been much greater in the experiment,
lock-in would have been prevented.

Bound ween Lock-in and Nonlock=in

At this point in time the exact upper bound on lock-in band-
width is not known. Griffin, 1985 [5), has suggested that the
lock-in bandwidth might be as large as 70% of the natural frequen-
cy.- He also introduces a parameter which serves the same purpose
as N,.
. Stansby, 1976 [12], has shown that lock-in can exist on short
driven cylinders with shear fractions greater than 20%. His test
cylinders had L/D's of 8 and 16. In his experiment the shear
fraction was approximately 33%, and in one scenario lock-in oc-
curred over the entire length. However, his results show that the
extent of the lock-in region in a sheared flow on a driven cylinder
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is very amplitude dependent, and is related to the formation of a
single coherent vortex cell jin the wake. In sheared flow the
presence of vibration nodes on the cylinder and spatially varying
anplitudes, suggest that such long lock-in regions will not occur
on typical structures with large L/D and high mode number.

- When lock-in occurs with one of the lowest modes of the struc-
ture, it may happen without wake synchronization over the entire
structure. This is a very typical occurrence on cantilevers, which
may exhibit very large tip deflections under lock-in conditions
with the lowest frequency natural mode. Often with such cylinders
there are regions which are not locked in and act as hydrodynamic
damping regions. Although vortex shedding is happening in these
nonlocked-in regions, the frequency of the resulting lift force
does not correspond to any other system natural frequency, and the
resulting emall response amplitudes are not sufficient at these
frequencies to disrupt the lock-in process.

For long cables and risers, which respond at higher mode
numbers, nonlock-in regions generate lift forces which do ceoincide
with other system natural frequencies, creating wide band response
which will prevent pure lock-in response from occurring, even in
portions of the cylinder with conditions favorable to lock-in. The
example of the 900 foot long cable at Castine is a data point which
marks one of the boundaries of lock-in behavior.

A Not So Useful Parameter, B

A parameter which is conspicuously missing from the earlier
diecussion is the shear parameter B, because it is not particularly
useful. It is usually defined as:

- B = (D/Vgg)dv/dx
- = (D/L)*AV/Vyee, fOr linear shears (7)

where Vy, is variously defined in the literature, Letting it be
Viax for the purposes of this discussion then for linearly varying
shears
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= (D/L)* AV/Viux (8)

This is just the ratio of the shear fraction, which separately has
usefulness, to L/D, which has little impact, except when less than
approximately 20 to 30. B can in fact be quite misleading, because
the directly useful information embodied in AV/V,, is obscured in
the division by L/D.

Neither the shear parameter nor the shear fraction give an
indication as to the dynamic response of the cable. That this is
8o can be simply proven. Consider a cable with a fixed L/D exposed
two different linear shear flows; one from 0.0 to 2.0 feet per
second and one from 0.0 to 4.0 feet per second. Both cases have
the same shear fraction, (i.e. 100%) and both have the same B8,
(i.e. D/L). Both cases need an additional dynamics parameter, such
as the number of potentially excited modaes, N,, to indicate the
likely participation of modes in the response.

Given that neither parameter describe the necessary dynamic
properties of the cable, then the one to be preferred is AV/V,,,
because it most clearly defines the properties of the shear, with-
out confusing the matter by introducing L/D.

HYDRODYNAMIC DAMPING IS CRITICAL IN DETERMINING DYNAMIC BEHAVIOR

The structural damping for tensioned marine structures sus-
ceptible to flow-induced vibration is usually very small and for
structures in water is rarely the deciding factor in the determina-
tion of whether or not lock-in occurs. However, when lock-in does
not occur or occurs over only a portion of the structure then
hydrodynamic sources of damping can be large and become very impor-
tant in determining dynamic response behavior. Whether or not a
cable responds dynamically as if it is of infinite length or is
dominated by standing waves depends heavily on hydrodynamic sources
of damping.

How Long Is2 Long?

The Green’s function of a cable is the response of the cable
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to a unit harmonic exciting force at a specified location. Figure
11 shows the magnitude squared of the Green‘’s function of a con-
stant tension cable of length L to a unit harmonic force applied at
its center. Figure 11B shows the response when the excitation
. frequency is equal to the natural frequency of the 5th mode and the
damping ratic is 1% of critical damping. The response shown is
dominated by the standing wave mode shape for the 5th mode. Single
mode resonant response dominates this case. A single mode approxi-
mation to the total response would be adequate. In Figure 11C the
excitation frequency is equal to the 99th natural frequency and the
damping ratio is 10%. The Green'’s function reveals that the vibra-
tion never reaches the cable ends. This is an example of infinite
cable behavior. 1In Figure 11D the natural frequency of the 9th
mode is equal to the excitation frequency and the damping ratio is
again 10%. In this case the Green’s function reveals intermediate
dynamic behavior. Some attenuation of the response exists between
the point of excitation and the ends of the cable. Some standing
wave behavior is also exhibited.

A very simple dimensionless parameter may be used to predict
which type of response is to be -expected. A general definition is
given by 2L{/A, where { is the damping ratio at the frequency of
interest and L/A is the ratio of the cylinder length to the average
wavelength. Average wavelength is used to accommodate modest
variations in tension. The reason that this parameter is the
relevant one is that for linear damping, the rate of decay of an
harmonic wave travelling on a cable or beam is given by:

spatial attenuation = e = g 2stx/d (9)

Hence, a wave travelling cne length of the cable would decay by the
factor e/}, If the exponent -2x{L/A is large, then the attenua-
tion is also large and the response of the system will be like that
of an infinite cable. When the exponent is small, little attenua-
tion occurs, the exponential approaches 1.0 and standing wave
resonant response would be typical. For the special cases of
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uniform cables and beams with pinned ends and constant tension, the
factor 2L/A equals the mode number, n. and the parameter 2{L/A
reduces to n{,. This is simply the product of the mode number and
the damping ratio for that mode. In Figures 11 B, ¢, and D this
parameter varies from 0.05 (standing wave with no apparent spatial
attenuation) to 0.9 (strongly attenuated standing wave) to 9.9
(infinite cable response).

A recommended guide for interpreting the parameter 2{L/A or
n{, is as follows. When it is less that 0.2, clear standing wave
behavior is to be expected over the entire cylinder. However, more
than one mode may be present in the response. When it is greater
than 2.0, then infinite cable behavior is the dominant characteris-
tic. Between 0.2 and 2.0 this parameter implies that at the fre-
quency of interest spatjal attenuation will be important, but
reflection from the ends will create a periodic modulation in the
observed response of the cable, like that in Figure 11D,
: The terminations of cylinders which exhibit infinite cable
characteristics deserve a special note. At the ends reflections do
occur, causing a local standing wave like pattern, which attenuates
rapidly with distance from the end. '

The problem for the designer is to estimate both the mode num-
ber, n, and the damping ratio, {,. The mode number or its equiva-
lent, twice the length to wavelength ratio, is relatively easy to
obtain. The damping ratio, however, is not so obvious. Does one
use structural damping or does one include the hydrodynamic sources
of damping? This was a very controversial point in the mid to late
1970‘s. Ultimately most researchers, including the author, agreed
that the structural non-hydrodynamic sources were the only impor-
tant ones. When considering response in sheared flows that conclu-
sion is completely false. The flaw is that in the 1970's the
reasoning was narrowly focused on lock-in. Shear flow phenomena
were not being seriously considered. Lock-in over the entire
structure was the focus of most discussions. Under pure lock-in
conditions the damping, which must be considered when evaluating
the reduced damping parameter, is the structural damping. Under
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unusual conditions lock-in may occur but not over the entire struc-
ture. In these cases hydrodynamic damping from the nonlock-in
regions sghould be included in the damping, when computing the
reduced damping.

Under nonlock-in conditions in sheared flow hydrodynamic
damping must be considered, as it is often many times greater than
the structural damping. This will be discussed in the next sec-
tion.

d ic D ing Estimation

A detailed hydrodynamic damping model is presented in Vandiver
and Chung, 1987[15]. A simplified model, adeguate for many appli-
cations is presented here. At any specific location an instanta-
neous drag force per unit length may be defined as the force in the
direction of the instantanecus relative fluid flow, as shown in
Figure 12. The fluid velocity relative to the cable is the vector
sum of the free stream velocity V(x) and the negative of the local
cross-flow cable velocity §(x,t). The in-line cable velocity
i(x,t) is assumed small and is neglected (it could be included if
greater precision was desired). 1If one assumes the drag force to
be proportional to the relative velocity squared, then the magni-
tude of the drag force takes the form given below.

Fp(X,t) = 4p,Cp D- {V2 + y2} (10)

Letting, B = }p,C,-D, the component of the drag force in the
y or cross flow direction is by simple trigonometry given by:

: Fy(x,t) = =B y{V:+§*} (11)

The damping force in equation (11) is a non-linear function of
&. It is helpful to find a linear equivalent damping constant r(x)
which dissipates the same energy per cycle as the non-linear one.
Thi=z is the approach carried out explicitly in Vandiver and Chung,
1987 [15]). However, under many conditions the following simplifi-
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cation is quite acceptable. When V(x)? »>> i’, then the cross flow
damping force per unit length reduces to:
Fy(X,t) = B-V(X)'y = £(x)'¥ (12)

where r(x) = $p.C,D-V(x)
This is a simple linear damping model. The local damping ratio is
then given by:

{ = r(x)/[20,(m+p,DC,/4)] (13)
Substituting in for r(x) yields
{ = 1pCoD V(x)/[20,(m+paD’C,/4)) (14)

The local velocity can be expressed in terms of reduced velocity
and the local shedding frequency as follows:

Vi{x) = D wV/2% (13)

Taking the example that the fluid is water, then the hydrodynamic
damping ratio may be expressed as

Ch = CDVRU,(X)/[21!20,,(5.9'0“'0.)] (16)

Strictly speaking, this is the local damping ratio for an infinite
length cylinder. However, by using the techniques of modal analy-
sis, as shown in {15], one may compute the modal damping ratio for
a specific mode n. In order to do this one must specify the shear
profile. 1In the case of a linear shear profile the modal hydrody-
namic damping ratio is given for mode n by:

Cne = CoVady max/ [47%0,(8.9.+C,)] (17)

Where u, ., 18 the maximum shedding frequency, corresponding to
the peak flow velocity , and o, is the natural frequency of mode n.

29



In the above two equations V, was introduced so as to allow the
local flow velocity to be expressed in terms of the local shedding
frequency o,(x). Therefore, V; should be taken to have a value of
about 5.9, which is the average value cbserved in the field. This
value, 5.9, is a refinement on the value of 5.0 given previously in
references ([15] and [16].

_ These damping models were verified in a field experimant which
is discussed in the next secticn of this paper. Prior to that
discussion, it is important to consider one refinement of the modal
hamping model given in equation (17). Each excited mode will have
a region of the cable where the local vortex shedding frequency and
the natural frequency coincide as depicted in Figure 13. 1In this
region net power flows into that particular mode[15]. This region
should be excluded in the calculation of hydrodynamic damping for
that particular mode. This would cause a corresponding reduction
in the damping ratio predicted by Equation 17.

The precise delineation of these power in and damping exclu-
sion ranges, is at the present rather uncertain. It is discussed
in Brooks 1987 [1}], Wang et al, 1985 [19], and Vandiver and Chung,
1987 [15]. The spatial extent of the damping exclusion region for
each mode will decrease as the number of responding modes, N,
increases. When N, exceeds approximately 10, the magnitude of the
correction to the estimated modal damping ratio, becomes suffi-
ciently small that one need not bother with it.

The assumption that V(x)? >> §3 is not valid in the slow part
of a stratified flow in which vibration from a high velocity region
passes suddenly into a region of very low or zeroc flow velocity.
In the case of a region of zero flow a different approximation may
be used, such as discussed by Sarpkaya,1%79 [10].

- A verification of the importance of hydrodynamic damping in
sheared conditions was accomplished in a field experiment conducted
in the summer of 1986, and reported on below.
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THE SHEARED FLOW EXPERIMENTS AT LAWRENCE, 1986

The experiments were conducted for the purpose of validating
the hydrodynamic damping model, and obtaining experimental data for
the case that n{, fell between the extremes of lightly damped
individual modes, typical of the cables at Castine, and infinite
cable behavior typical of the cables tested in St. Croix. At
Castine in 1981, fourth mode lockin vibration of the cable or pipe
resulted in n{n values of 0.008 and 0.004 respectively. Standing
waves with no apparent attenuation were observed. For the St.
Croix experiments the total damping was approximately 1.5% and a
typical value of 2{L/A was 2.3 at a length of 950 ft. Infinite
cable behavior was observed.

The experiments were conducted during the summer of 1986. A
complete description, including many figures, may be found in
references {2,15,16}. The test site was a mill canal, built in
1848 in Lawrence, Massachusetts. A dam diverts the water from the
Merrimack River into the canal. The flow is controlled by four
submerged gates, which are spaced at equal horizontal intervals
beneath a gate house at the head of the canal. By controlling the
various gate openings a sheared flow can be developed horizontally
across the width of the canal, which is approximately 58 feet. The
average depth of the canal is ten feet.

The test cable location was approximately 250 feet downstream
of the gate house. The cable was tensioned horizontally across the
width of the canal about one foot under the surface, as shown in
Figure 14. Heavy steel pipe supports transferred the cable loads
to the walls of the canal. Tension was applied to the cable via a
system of pulleys and a hand-operated winch. For a given winch
position the cable had essentially constant arc length. The ten~
sion then varied slowly with mean drag force on the cable. Tension
was measured with a tension cell connected in series between the
cable and winch.

Five feet upstream of the test cable, a simple traversing
mechanism was suspended from a taut wire above the waters of the
canal to carry a Neil Brown Instruments DRCM-2, two-axis acoustic
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current meter. The transducer was located about one foot under
water and was oriented so that the instantaneous velocity was
resolved into two components in the horizontal plane. The velocity
was measured at two samples per second.

The 58-foot long test cable is shown in Figure 15. It con-

sisted of a 1.125 inch rubber hose with a 0.5 inch inside diameter.
Seven 0.16 inch diameter braided kevlar cables were carried inside
of the hose. Each kevlar cable had seven conductors inside of it.
Three kevlar cables were used soclely as load carrying members,
three cables were used to carry accelercmeter signals and power,
and one cable was used as a spare.
' Six biaxial pairs of force balance accelerometers were placed
on the centerline of the cable at locations shown in the figure.
Each biaxial pair was 0.5 inches in diameter and 3 inches long.
Space was created for the kevlar cables to pass around the acceler-
ometers at these locations, with no change in the cutside diameter
of the hose. The accelerocmeters, tension cell, and cﬁrrent meter
were the same as used in previous experiments conducted at Castine,
Maine. _ :

The 12 accelerometer outputs, tension, and current data were
carried via a multi-~conductor cable from the ts=st cable to the
gatehouse, where a Digital Equipment MINC-23 data acquisition
computer was located. Fourteen data channels were digitized and
stored on floppy disks.

Sheared Current Profiles

The current profiles were measured prior to response tests.
The results of three different profiles are shown in Figure 16.
They are designated shear flow profile 1, 2, and 3 (SFP1l, etc.).
SFP3 was the steepest shear with a peak flow velocity at times
axceeding 4 feet per second and a minimum flow velocity of -0.5
feet per second. The minus indicates reverse flow. SFP2, a milder
shear, ranged from 2 feet per second down to zero in a nearly
linear profile. SFPl was made as close to uniform as possible by
careful positioning of the gates. The velocity varied approximate-
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ly 30% along the length.

For all profiles the flow was highly turbulent. The turbu-
lence intensity level was from 10 to 20 percent of the maximum
current in the profile. The longest time scale of the turbulence
was up to several seconds in length, and was associated with large
eddies, which were carried downstream from the gatehouse.

An important observation is that the turbulence was able to
prevent constant amplitude, single mode lock-in from occurring,
even with the most uniform profile, SFP1, which had a AV/V,y = 0.3.

PREDICTED AND MEASURED HYDRODYNAMIC DAMPING

The structural damping measured by free vibration decay tests
in air for the test cable in this experiment was about 0.3% of
critical for the frequency ranges and tensions later experienced in
the water. A more precise measure is not important because the
hydrodynamic damping will be shown to be far larger.

Figure 17 is a sample time history of the response of the test
cable in the highly sheared flow, for which AV/V,, was 1.125.
Simultanecus time histories ¢f cross-flow acceleration are given
for all six measurement locations. It is quite obvious that the
high velocity locations had higher response than the low velocity
regions. In this case the rms displacement was 0.3 diameters at
x=13L/16 and 0.5 diameters at x=L/8. The tension was 151 pounds
and the natural modes were 0.6 Hz apart. The peak vortex shedding
frequency corresponded to about the 10th natural frequency, and
therefore N, the number of excited modes was approximately 10.
Enough modes were involved in the response that variation in mode
shape is not a particularly important factor when comparing the rms
response of one location to another.

The decrease in observed rms response level between positions
near ocpposite ends of the cable was only possible if n{, was great-
er than 0.2. Structural damping alone with a value of {, = 0.003,
leads to an estimate of n{, for the 10th mode of 0.03; too small to
explain the spatial attenuation. Hydrodynamic damping was impor-
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tant in this case and can be estimated using equation 15.

For this experiment the specific gravity of the cable was
1.34. Letting the average added mass coefficient, C,, and the drag
coefficient, C,, both equal 1.0, and setting V, to a value of 5.9
leads to the following prediction for hydrodynamic modal damping
ratios.

-

lun = 0.0640, /0, (18)

The ratio o, ../w, is approximately one for the highest excited
mode, independent of mode number. Therefcre, for the highest
excited mode the hydrodynamic modal damping ratio is predicted to
be 6.4%, which when added to the structural damping ratio yields a
total damping of 6.7%. Since this was mode ten, then the parameter
n{, is .67. For the lower excited modes the hydrodynamic damping
ratio is larger than 6.4% and increases in proportion to the ratio
Oy ,ax/®,. However, since n is smaller for lower modes, one finds
that n{, remains constant at 0.67. This value is as expected
between the limits of 0.2 and 2.0 and consistent with the observed
spatial attenuation in response.

To conclusively demonstrate that the predicted hydrodynamic
damping is correct, one must use it in a prediction model, which
includes the effects of current shear and hydrodynamic damping.
Such a model is proposed and used in Chung, 1987 [2], and Vandiver
and Chung, 1988 [16]. Comparisons between measured and predicted
response for the shear flow experiments at Lawrence are presented.
One example is given here.

Figure 18 is a comparison between the predicted and measured
acceleration response spectrum of the cable at x = 13L/16. The
cable was exposed to the intermediate shear profile (SFP2). The
predictive model includes the effects of shear, turbulence, hydro-
dynamic damping, correlation length, and higher order harmonics of
the vortex shedding frequencies. For this case the maximum flow
velocity was approximately 2.0 ft/s and the highest excited mode
was the fifth, with a predicted value of total damping of 6.7%.
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Rgain n{, is constant and independent of mode number with a value
of 0.33. The number of excited modes was 5 and AV/V,, was 100%.
Lock~in was not observed. The controlling green’s functions for
the cable had characteristics similar to those shown in Figure 11D
and were consistent with values of n{, equal to 0.3.

In summary, the Lawrence experiment provided an excellent
opportunity to test the validity of using the dimensionless parame-
ters recommended in this paper for predicting response character-
istics. These parameters were N,, AV/V,,, and nl,, where {, includ-
éd hydrodynamic effects.

The Lawrence tests also provided an opportunity to conduct a
simple direct comparison between predicted and observed infinite
cable hydrodynamic damping, as discussed next.

Res e der ensi i ent iform ow

With large hydrodynamic damping the vibration excited at one
location is attenuated as it travels through the cable to distant
points. This was confirmed by an independent measurement. Under
steady state flow-induced vibration conditions, the cable was
struck impulsively with a wooden pole, at a location near one end.
An impulse propagated through the cable. Figure 19 shows the
simultaneocus time histories at all six accelerometer locations.
The impulse can be seen to travel from one location to the next
with a travel time delay and an attenuation due to damping. By
comparing the spectra of the accelerometer time histories it is
possible to estimate the frequency content of the impulse and the
effective damping coefficient. The cable tension was 450 pounds,
the current was the approximately uniform profile (SFP1),AV/V,, =
0.3. The cable’'s flow-induced vibration response was dominated by
nonlock-in third mode response at a natural frequency of 3.0 Hz and
an rms response of approximately 1/2 diameter. The predicted
damping experienced by the impulse as it travelled along the cable
may be obtained using the damping model for waves travelling along
an infinite cable. The infinite cable model is valid for the
period of time prior to the reflection of the pulse from the far
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end of the cable. Using equation {16) and the following values for
the necessary constants, the hydrodynamic damping prediction is ob-
tained. Letting C, = 2.0, V; = 5.9, C, = 1.0, and s.g. = 1.34,
yields:

Lo = .2560,(x)/a, (19)

-

The dominant shedding frequency was 3.0 Hz. The impulse had most
of its energy in the 15 to 24 Hz range. Taking 18 Hz as a frequen-
cy typical of the impulse, the above equation yields a hydrodynamic
damping prediction of 4.3%. A C, of 2.0 was used to reflect the
relatively larger rms response (0.5 diameter).
If the damping behaves linearly, then the attenuation of a
wave amplitude as a function of distance travelled is given by:
attenuation = @™ = g-{ud/e (20)
where k = w/c, the wave number
¢ = speed of wave propagation
d = distance travelled
Since response spectra are proportional to response amplitude
squared, then the attenuation of the impulse energy in the 15 to 24
Hz band should be given by the square of the above equation. If A,
and A, are the spectral magnitudes in the 15 to 24 Hz band for two
different locations, a distance d apart, then the effective damping
may be deduced as in the following equation.

{ = c-1ln(A,/A,)/20,d (21)

The two spectra in Fiqure 21 are used here as an example. The
locations were separated by 19.3 feet. Choosing a typical fre-
quency of £=18 Hz, and noting that v =2xf, d = 19.3 feet, C = 120
feet/sec, and the ratio of the two spectra in the 15 to 24 Hz band
is approximately six to one, results in an estimate of { = 0.049 or
4.9% compared to the prediction of 4.6%. Many similar calculations
were performed between different locations and for different im-
pulse events. The results fell into a range of 4 to 6% total
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damping.

If one substitutes the formula for damping as given in equa-
tion 19 into equation 20 for wave attenuation, the result is inde-
pendent of vibration frequency. This is consistent with the ex-
pression for damping ratio in equation (16), which states that
damping ratic decreases with frequency. Over a fixed distance, d,
high frequency waves travel more wavelengths than low frequency
waves, which have greater damping but travel fewer wavelengths.
Over a fixed distance all vibration frequency components attenuate
the same amount.

SUMMARY AND CONCLUSIONS

The design of moorings, ROV tethers, pipelines, and petroleum
drilling and production risers all depend on the expected magnitude
and frequency of vortex-induced vibration. Lock-in usually results
in the largest amplitudes of vibration and the largest mean drag
coefficients, and, therefore is considered in most situations to be
the worst case. Establishing whether or not it will occur is
usually of great concern. This paper has attempted to reveal those
parameters which have greatest influence over the occurrence of
lock-in for flexible cylinders with large L/D, and has provided
cagse studies to support the conclusions.

The parameters most useful for determining whether or not
lock-in will occur are the shear fraction, AV/V,,, and the number
of potentially excited modes, N,, and tc a usually lesser extent
the turbulence intensity.

When lock-in is likely to occur, the mass ratic has a strong
effect on determining the range of reduced velocity over which
lock-in can occur. If this range is narrow, then lock-in may occur
only for narrow bands of flow velocity. For low mass ratio cylin-
ders the reduced velocity lock-in range is broad and lock-in re-
gions may overlap, such that transition from lock-in in one mode to
the next is possible as the velocity increases.

Under lock-in conditions the response amplitude may be pre-
dicted using the response parameter, §;, based on the structural
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damping. However, S; has been shown not to be a function of mass
ratio as commonly believed.

When multiple modes respond under nonlock-in conditions, then

another parameter nf,, has been shown to reveal whether wave propa-
- gation or standing wave characteristics dominate the nature of the
dynamic response. In sheared flows which create nonlock-in dynamic
response, hydrodynamic damping has been shown to be usually much
#more important than structural damping in governing response ampli-
tude.
" Many conclusions require further refinement, largely through
experimental work. In many cases the critical parameters are
known, but the values which mark the transition from one type of
behavior to another need refinement. For example, what combination
of values of N;, the number of potential responding modes, and
AV/Vyy, the shear fraction, define the boundary between lock-in and
non-lockin. These and many other similar problems require experi-
mental data before they can be resolved.
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Figure 1. Castine Experimental Setup, 1981
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